A role for dendritic mGluR5-mediated local translation of Arc/Arg3.1 in MEF2-dependent synapse elimination.

نویسندگان

  • Julia R Wilkerson
  • Nien-Pei Tsai
  • Marina A Maksimova
  • Hao Wu
  • Nicole P Cabalo
  • Kristofer W Loerwald
  • Jason B Dictenberg
  • Jay R Gibson
  • Kimberly M Huber
چکیده

Experience refines synaptic connectivity through neural activity-dependent regulation of transcription factors. Although activity-dependent regulation of transcription factors has been well described, it is unknown whether synaptic activity and local, dendritic regulation of the induced transcripts are necessary for mammalian synaptic plasticity in response to transcription factor activation. Neuronal depolarization activates the myocyte enhancer factor 2 (MEF2) family of transcription factors that suppresses excitatory synapse number. We report that activation of metabotropic glutamate receptor 5 (mGluR5) on the dendrites, but not cell soma, of hippocampal CA1 neurons is required for MEF2-induced functional and structural synapse elimination. We present evidence that mGluR5 is necessary for synapse elimination to stimulate dendritic translation of the MEF2 target gene Arc/Arg3.1. Activity-regulated cytoskeletal-associated protein (Arc) is required for MEF2-induced synapse elimination, where it plays an acute, cell-autonomous, and postsynaptic role. This work reveals a role for dendritic activity in local translation of specific transcripts in synapse refinement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased Expression of the Immediate-Early Gene Arc/Arg3.1 Reduces AMPA Receptor-Mediated Synaptic Transmission

Arc/Arg3.1 is an immediate-early gene whose expression levels are increased by strong synaptic activation, including synapse-strengthening activity patterns. Arc/Arg3.1 mRNA is transported to activated dendritic regions, conferring the distribution of Arc/Arg3.1 protein both temporal correlation with the inducing stimulus and spatial specificity. Here, we investigate the effect of increased Arc...

متن کامل

Elongation Factor 2 and Fragile X Mental Retardation Protein Control the Dynamic Translation of Arc/Arg3.1 Essential for mGluR-LTD

Group I metabotropic glutamate receptors (mGluR) induce long-term depression (LTD) that requires protein synthesis. Here, we demonstrate that Arc/Arg3.1 is translationally induced within 5 min of mGluR activation, and this response is essential for mGluR-dependent LTD. The increase in Arc/Arg3.1 translation requires eEF2K, a Ca(2+)/calmodulin-dependent kinase that binds mGluR and dissociates up...

متن کامل

Arc/Arg3.1 Is a Postsynaptic Mediator of Activity-Dependent Synapse Elimination in the Developing Cerebellum

Neural circuits are shaped by activity-dependent elimination of redundant synapses during postnatal development. In many systems, postsynaptic activity is known to be crucial, but the precise mechanisms remain elusive. Here, we report that the immediate early gene Arc/Arg3.1 mediates elimination of surplus climbing fiber (CF) to Purkinje cell (PC) synapses in the developing cerebellum. CF synap...

متن کامل

Fragile X Mental Retardation Protein Is Required for Synapse Elimination by the Activity-Dependent Transcription Factor MEF2

Fragile X syndrome (FXS), the most common genetic form of mental retardation and autism, is caused by loss-of-function mutations in an RNA-binding protein, Fragile X Mental Retardation Protein (FMRP). Neurons from patients and the mouse Fmr1 knockout (KO) model are characterized by an excess of dendritic spines, suggesting a deficit in excitatory synapse elimination. In response to neuronal act...

متن کامل

Arg3.1/Arc mRNA induction by Ca2+ and cAMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation.

Long-term potentiation (LTP) is a cellular model for persistent synaptic plasticity in the mammalian brain. Like several forms of memory, long-lasting LTP requires cAMP-mediated activation of protein kinase A (PKA) and is dependent on gene transcription. Consequently, activity-dependent genes such as c-fos that contain cAMP response elements (CREs) in their 5' regulatory region have been studie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell reports

دوره 7 5  شماره 

صفحات  -

تاریخ انتشار 2014